Ser39
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.6.0.2
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser39  -  fascin (mouse)

Site Information
KVNASAssLkkKQIW   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 450888

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 11 ) , immunoassay ( 1 ) , immunoprecipitation ( 1 ) , mass spectrometry ( 2 , 3 , 5 , 6 , 7 , 8 ) , mutation of modification site ( 2 , 4 , 9 , 10 , 11 ) , phospho-antibody ( 1 , 2 ) , western blotting ( 1 , 2 , 4 )
Disease tissue studied:
neuroblastoma ( 7 , 9 ) , melanoma skin cancer ( 9 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 3 , 5 ) , 'muscle, smooth' ( 1 ) , 'renal, podocyte' ( 2 ) , 3T3 (fibroblast) ( 9 ) , A-875 (melanocyte) ( 10 ) , B16F1 (melanocyte) ( 9 ) , brain ( 8 ) , heart ( 6 ) , LLC-PK1 (renal) ( 11 ) , N1E-115 (neuron) ( 7 ) , Neuro-2a (neuron) ( 9 ) , neuron-brain ( 4 )

Upstream Regulation
Regulatory protein:
RAB35 (mouse) ( 1 ) , TRAF3IP2 (mouse) ( 1 )
Putative in vivo kinases:
PKCA (mouse) ( 1 , 11 ) , PKCG (human) ( 4 )
Treatments:
calphostin_C ( 11 ) , chelerythrine ( 11 ) , fibronectin ( 11 ) , Go_6976 ( 1 ) , IL-17A ( 1 ) , mechanical stress ( 2 ) , phorbol_ester ( 11 ) , siRNA ( 1 )

Downstream Regulation
Effects of modification on fascin:
intracellular localization ( 11 ) , molecular association, regulation ( 9 , 11 )
Effects of modification on biological processes:
cell adhesion, inhibited ( 2 ) , cell motility, altered ( 4 ) , cytoskeletal reorganization ( 1 , 2 , 9 ) , signaling pathway regulation ( 1 )
Inhibit interaction with:
ACTA1 (mouse) ( 9 ) , ACTB (mouse) ( 11 )

Disease / Diagnostics Relevance
Relevant diseases:
diabetes mellitus ( 2 )

References 

1

Bulek K, et al. (2019) IL-17A Recruits Rab35 to IL-17R to Mediate PKCα-Dependent Stress Fiber Formation and Airway Smooth Muscle Contractility. J Immunol
30683702   Curated Info

2

Kliewe F, et al. (2017) Studying the role of fascin-1 in mechanically stressed podocytes. Sci Rep 7, 9916
28855604   Curated Info

3

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

4

Sonego M, et al. (2013) Fascin regulates the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci 33, 12171-85
23884926   Curated Info

5

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

6

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

7

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

8

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

9

Vignjevic D, et al. (2006) Role of fascin in filopodial protrusion. J Cell Biol 174, 863-75
16966425   Curated Info

10

Shonukan O, et al. (2003) Neurotrophin-induced melanoma cell migration is mediated through the actin-bundling protein fascin. Oncogene 22, 3616-23
12789270   Curated Info

11

Adams JC, et al. (1999) Cell-matrix adhesions differentially regulate fascin phosphorylation. Mol Biol Cell 10, 4177-90
10588651   Curated Info