Thr410
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.5.9.1
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr410  -  PKCZ (rat)

Site Information
GPGDTTStFCGTPNY   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 447510

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 5 , 7 , 8 ) , electrophoretic mobility shift ( 8 ) , immunoprecipitation ( 3 ) , microscopy-colocalization with upstream kinase ( 2 ) , mutation of modification site ( 2 , 5 , 8 , 9 ) , phospho-antibody ( 1 , 3 , 4 , 5 , 6 , 7 , 9 , 10 ) , western blotting ( 1 , 3 , 6 , 7 )
Relevant cell line - cell type - tissue:
'brain, cerebral cortex' ( 1 ) , 'brain, hippocampus' ( 3 ) , 293 (epithelial) [PDK1 (human)] ( 10 ) , 293 (epithelial) [PKCZ (rat)] ( 10 ) , adipocyte-adipose tissue ( 9 ) , H4IIe (hepatic) ( 7 ) , heart ( 4 ) , L6 (myoblast) ( 6 , 9 ) , myocyte-heart ( 2 ) , Rat2 (fibroblast) ( 5 ) , WKY ('muscle, smooth') ( 8 )

Upstream Regulation
Putative in vivo kinases:
PDK1 (human) ( 3 , 10 )
Kinases, in vitro:
PDK1 (human) ( 3 , 10 ) , PDK1 (rat) ( 5 )
Treatments:
ceramide ( 6 ) , H-89 ( 3 ) , hypoxia ( 1 ) , hypoxia/reoxygenation ( 1 ) , insulin ( 4 , 7 , 9 ) , KN-93 ( 3 ) , long-term_potentiation ( 3 ) , nogalamycin ( 8 ) , osmotic_stress ( 7 ) , PKCI_19-36 ( 7 ) , U0126 ( 3 ) , wortmannin ( 3 )

Downstream Regulation
Effects of modification on PKCZ:
enzymatic activity, induced ( 5 , 9 ) , intracellular localization ( 5 ) , protein degradation ( 5 )
Effects of modification on biological processes:
cytoskeletal reorganization ( 2 ) , transcription, altered ( 8 )
Induce interaction with:
MYO1C (mouse) ( 2 ) , TNNI1 (mouse) ( 2 ) , TNNT1 (mouse) ( 2 ) , TPM1 (rat) ( 2 ) , desmin (rat) ( 2 )

References 

1

Willis CL, Meske DS, Davis TP (2010) Protein kinase C activation modulates reversible increase in cortical blood-brain barrier permeability and tight junction protein expression during hypoxia and posthypoxic reoxygenation. J Cereb Blood Flow Metab 30, 1847-59
20700133   Curated Info

2

Wu SC, Solaro RJ (2007) Protein kinase C zeta. A novel regulator of both phosphorylation and de-phosphorylation of cardiac sarcomeric proteins. J Biol Chem 282, 30691-8
17724026   Curated Info

3

Kelly MT, Crary JF, Sacktor TC (2007) Regulation of protein kinase Mzeta synthesis by multiple kinases in long-term potentiation. J Neurosci 27, 3439-44
17392460   Curated Info

4

Mouton V, et al. (2007) Evaluation of the role of protein kinase Czeta in insulin-induced heart 6-phosphofructo-2-kinase activation. Cell Signal 19, 52-61
16829026   Curated Info

5

Le Good JA, Brindley DN (2004) Molecular mechanisms regulating protein kinase Czeta turnover and cellular transformation. Biochem J 378, 83-92
14580237   Curated Info

6

Powell DJ, Hajduch E, Kular G, Hundal HS (2003) Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol 23, 7794-808
14560023   Curated Info

7

Lornejad-Schäfer MR, et al. (2003) Osmotic regulation of insulin-induced mitogen-activated protein kinase phosphatase (MKP-1) expression in H4IIE rat hepatoma cells. Biochem J 371, 609-19
12529177   Curated Info

8

Rafty LA, Khachigian LM (2001) Sp1 phosphorylation regulates inducible expression of platelet-derived growth factor B-chain gene via atypical protein kinase C-zeta. Nucleic Acids Res 29, 1027-33
11222751   Curated Info

9

Standaert ML, et al. (2001) Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry 40, 249-55
11141077   Curated Info

10

Le Good JA, et al. (1998) Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281, 2042-5
9748166   Curated Info