Thr916
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Thr916  -  CTNND1 (mouse)

Site Information
ERGDHNRtLDRsGDL   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 450454

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 13 ) , [32P] bio-synthetic labeling ( 13 ) , immunoprecipitation ( 5 ) , mass spectrometry ( 2 , 4 , 6 , 7 , 8 , 9 , 10 , 11 ) , mutation of modification site ( 3 , 5 , 12 , 13 ) , phospho-antibody ( 5 , 12 ) , phosphoamino acid analysis ( 13 ) , phosphopeptide mapping ( 13 ) , western blotting ( 5 , 12 )
Disease tissue studied:
anthrax infection ( 9 ) , breast cancer ( 5 ) , colorectal cancer ( 3 , 5 , 12 ) , colorectal carcinoma ( 3 , 5 , 12 ) , melanoma skin cancer ( 11 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 2 , 4 , 7 ) , 3T3 (fibroblast) ( 12 , 13 ) , A431 (epithelial) ( 5 , 12 ) , COLO-205 (intestinal) ( 3 , 13 ) , COS (fibroblast) ( 12 ) , HCT116 (intestinal) ( 5 , 12 , 13 ) , heart ( 8 ) , MDA-MB-231 (breast cell) ( 5 ) , MDCK (epithelial) ( 5 , 12 ) , mpkCCD (renal) ( 10 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 11 ) , spleen ( 9 ) , stromal ( 6 ) , SW48 (intestinal) ( 5 )

Upstream Regulation
Treatments:
insulin ( 7 ) , ischemia ( 6 )

Downstream Regulation
Effects of modification on CTNND1:
molecular association, regulation ( 3 )
Effects of modification on biological processes:
cell adhesion, inhibited ( 3 )

References 

1

Sacco F, et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion. Nat Commun 7, 13250
27841257   Curated Info

2

Minard AY, et al. (2016) mTORC1 Is a Major Regulatory Node in the FGF21 Signaling Network in Adipocytes. Cell Rep 17, 29-36
27681418   Curated Info

3

Shashikanth N, et al. (2015) Allosteric Regulation of E-Cadherin Adhesion. J Biol Chem 290, 21749-61
26175155   Curated Info

4

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

5

Kourtidis A, et al. (2015) Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS One 10, e0129964
26067913   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

8

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

9

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

10

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

11

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

12

Xia X, Brooks J, Campos-González R, Reynolds AB (2004) Serine and threonine phospho-specific antibodies to p120-catenin. Hybrid Hybridomics 23, 343-51
15684660   Curated Info

13

Xia X, Mariner DJ, Reynolds AB (2003) Adhesion-associated and PKC-modulated changes in serine/threonine phosphorylation of p120-catenin. Biochemistry 42, 9195-204
12885254   Curated Info