Ser288
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.5
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser288  -  CTNND1 (mouse)

Site Information
GLEDDQRsMGyDDLD   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 450452

In vivo Characterization
Methods used to characterize site in vivo:
2D analysis ( 22 ) , [32P] bio-synthetic labeling ( 22 ) , immunoassay ( 11 ) , immunoprecipitation ( 2 , 11 ) , mass spectrometry ( 4 , 5 , 6 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 15 , 16 , 17 , 19 , 20 ) , mutation of modification site ( 1 , 2 , 11 , 21 , 22 ) , phospho-antibody ( 2 , 11 , 21 ) , phosphoamino acid analysis ( 22 ) , phosphopeptide mapping ( 22 ) , western blotting ( 2 , 11 , 21 )
Disease tissue studied:
breast cancer ( 2 ) , colorectal cancer ( 1 , 2 , 21 ) , colorectal carcinoma ( 1 , 2 , 21 ) , lung cancer ( 11 ) , non-small cell lung cancer ( 11 ) , non-small cell lung adenocarcinoma ( 11 ) , non-small cell large cell lung carcinoma ( 11 ) , non-small cell squamous cell lung carcinoma ( 11 ) , melanoma skin cancer ( 16 ) , testicular cancer ( 13 )
Relevant cell line - cell type - tissue:
'3T3-L1, differentiated' (adipocyte) ( 5 ) , 3T3 (fibroblast) ( 21 , 22 ) , A431 (epithelial) ( 2 , 21 ) , A549 (pulmonary) ( 11 ) , brain ( 9 , 12 ) , COLO-205 (intestinal) ( 1 , 22 ) , COS (fibroblast) ( 21 ) , F9 (testicular) ( 13 ) , fibroblast-lung ( 15 ) , HBE (epithelial) ( 11 ) , HCT116 (intestinal) ( 2 , 21 , 22 ) , heart ( 6 , 12 ) , Hepa 1-6 (epithelial) ( 17 ) , kidney ( 12 ) , liver ( 4 , 8 , 12 , 20 ) , liver [leptin (mouse), homozygous knockout] ( 8 ) , lung ( 12 ) , MDA-MB-231 (breast cell) ( 2 ) , MDCK (epithelial) ( 2 , 21 ) , MEF (fibroblast) [Raptor (mouse), knockdown] ( 7 ) , MEF (fibroblast) [RICTOR (mouse), knockdown] ( 7 ) , MEF (fibroblast) [Src iso1 (mouse)] ( 19 ) , MEF (fibroblast) [TSC2 (mouse), homozygous knockout] ( 10 ) , MEF (fibroblast) ( 7 ) , mpkCCD (renal) ( 14 ) , NCI-H460 (pulmonary) ( 11 ) , pancreas ( 12 ) , SK-MES-1 (pulmonary) ( 11 ) , skin [mGluR1 (mouse), transgenic, TG mutant mice] ( 16 ) , spleen ( 12 ) , SW48 (intestinal) ( 2 ) , testis ( 12 )

Upstream Regulation
Treatments:
GF109203X ( 11 ) , insulin ( 5 ) , phorbol_ester ( 11 ) , serum_starvation ( 11 )

Downstream Regulation
Effects of modification on CTNND1:
intracellular localization ( 11 ) , molecular association, regulation ( 1 , 11 )
Effects of modification on biological processes:
carcinogenesis, induced ( 11 ) , cell adhesion, inhibited ( 1 )
Induce interaction with:
Kaiso (human) ( 11 )

Disease / Diagnostics Relevance
Relevant diseases:
non-small cell lung adenocarcinoma ( 11 ) , non-small cell squamous cell lung carcinoma ( 11 )

References 

1

Shashikanth N, et al. (2015) Allosteric Regulation of E-Cadherin Adhesion. J Biol Chem 290, 21749-61
26175155   Curated Info

2

Kourtidis A, et al. (2015) Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS One 10, e0129964
26067913   Curated Info

3

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

4

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

5

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

6

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

7

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

8

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

9

Trinidad JC, et al. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11, 215-29
22645316   Curated Info

10

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

11

Zhang PX, et al. (2011) p120-catenin isoform 3 regulates subcellular localization of Kaiso and promotes invasion in lung cancer cells via a phosphorylation-dependent mechanism. Int J Oncol 38, 1625-35
21468542   Curated Info

12

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

13

Zhou J (2010) CST Curation Set: 9665; Year: 2010; Biosample/Treatment: cell line, F9/untreated; Disease: testicular cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

14

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

15

Guo A (2010) CST Curation Set: 9027; Year: 2010; Biosample/Treatment: cell line, mouse lung fibroblasts/untreated; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: RXXp[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-Akt Substrate (RXRXXS/T) (110B7) Rabbit mAb Cat#: 9614, PTMScan(R) Phospho-Akt Substrate Motif (RXXS*/T*) Immunoaffinity Beads Cat#: 1978
Curated Info

16

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

17

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

18

Mertins P, et al. (2008) Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 7, 1763-77
18515860   Curated Info

19

Luo W, et al. (2008) Global impact of oncogenic Src on a phosphotyrosine proteome. J Proteome Res 7, 3447-60
18563927   Curated Info

20

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

21

Xia X, Brooks J, Campos-González R, Reynolds AB (2004) Serine and threonine phospho-specific antibodies to p120-catenin. Hybrid Hybridomics 23, 343-51
15684660   Curated Info

22

Xia X, Mariner DJ, Reynolds AB (2003) Adhesion-associated and PKC-modulated changes in serine/threonine phosphorylation of p120-catenin. Biochemistry 42, 9195-204
12885254   Curated Info