Ser16
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage PhosphoSitePlus® v6.7.7
Powered by Cell Signaling Technology
Home > Phosphorylation Site Page: > Ser16  -  PLB (rat)

Site Information
RSAIRRAstIEMPQQ   SwissProt Entrez-Gene
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 448114

In vivo Characterization
Methods used to characterize site in vivo:
[32P] bio-synthetic labeling ( 28 ) , immunoprecipitation ( 14 ) , mass spectrometry ( 12 ) , mutation of modification site ( 14 , 23 ) , phospho-antibody ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 13 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 ) , western blotting ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 13 , 14 , 15 , 16 , 17 , 18 , 24 , 26 , 27 )
Disease tissue studied:
type 2 diabetes ( 6 )
Relevant cell line - cell type - tissue:
'heart, ventricle' ( 1 , 2 , 6 , 7 ) , CHO-K1 (fibroblast) ( 14 ) , heart ( 5 , 8 , 9 , 10 , 11 , 12 , 13 , 18 , 20 , 24 , 28 ) , HeLa (cervical) ( 14 ) , intestine ( 12 ) , lung ( 12 ) , muscle ( 12 ) , myocardium ( 8 ) , myocyte ( 2 , 7 ) , myocyte-heart ( 1 , 3 , 4 , 6 , 13 , 14 , 15 , 16 , 17 , 19 , 22 , 23 , 25 , 26 , 27 ) , stomach ( 12 )

Upstream Regulation
Regulatory protein:
ADCY6 (mouse) ( 16 ) , Akt1 (human) ( 16 ) , PMCA4 iso2 (human) ( 15 ) , PRKD1 (mouse) ( 17 )
Putative in vivo kinases:
Akt1 (rat) ( 16 ) , PKACA (rat) ( 19 )
Kinases, in vitro:
Akt1 (human) ( 16 )
Putative upstream phosphatases:
PPP1CA (human) ( 13 )
Treatments:
5-Methoxytryptophan ( 3 ) , 8-Rp-cAMP ( 16 ) , acidosis ( 24 ) , Akt-I-1 ( 16 ) , Akt-I-1,2 ( 16 ) , aortic banding ( 8 ) , azaserine ( 14 ) , Bay 60-7550 ( 7 ) , bradykinin ( 21 ) , Ca(2+) ( 24 , 28 ) , cariporide ( 4 ) , ciclosporin ( 13 , 19 ) , cigarette smoke extract ( 1 ) , colforsin ( 16 ) , CPA ( 16 ) , electrical_stimulation ( 20 , 26 ) , empagliflozin ( 4 ) , endothelin ( 17 ) , exercise ( 18 ) , exercise training ( 10 ) , FK506 ( 13 ) , Go_6976 ( 13 ) , H-89 ( 16 , 19 , 24 ) , high_glucose ( 14 ) , hypertension ( 25 ) , ibrutinib ( 3 ) , ICI-118,551 ( 16 ) , inhibitor-1 ( 11 ) , ischemia ( 13 , 23 ) , ischemia/reperfusion ( 23 ) , isoproterenol ( 7 , 15 , 16 , 17 , 19 , 20 , 24 , 28 ) , ketogenic diet ( 2 ) , liothyronine ( 27 ) , low_pH ( 28 ) , nifedipine ( 24 ) , norepinephrine ( 22 , 26 ) , obesity ( 9 ) , okadaic_acid ( 19 , 24 ) , PKI ( 16 ) , prazosin ( 22 , 26 ) , pressure ( 10 ) , propranolol ( 23 ) , PUGNAc ( 14 ) , resistance training ( 9 ) , serum ( 16 ) , SMLT ( 15 ) , streptozotocin ( 14 )

Downstream Regulation
Effects of modification on PLB:
activity, induced ( 13 ) , enzymatic activity, induced ( 7 , 8 )

Disease / Diagnostics Relevance
Relevant diseases:
hypertrophic cardiomyopathy ( 8 ) , diabetes mellitus ( 2 ) , type 2 diabetes ( 6 )

References 

1

Matsumura S, et al. (2024) Direct toxicity of cigarette smoke extract on cardiac function mediated by mitochondrial dysfunction in Sprague-Dawley rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 19, e0295737
38165883   Curated Info

2

Lee TI, et al. (2023) Ketogenic Diet Regulates Cardiac Remodeling and Calcium Homeostasis in Diabetic Rat Cardiomyopathy. Int J Mol Sci 24
38003332   Curated Info

3

Shuai W, et al. (2023) 5-Methoxytryptophan alleviates atrial structural remodeling in ibrutinib-associated atrial fibrillation. Heliyon 9, e19501
37810107   Curated Info

4

Silva Dos Santos D, et al. (2023) Empagliflozin reduces arrhythmogenic effects in rat neonatal and human iPSC-derived cardiomyocytes and improves cytosolic calcium handling at least partially independent of NHE1. Sci Rep 13, 8689
37248416   Curated Info

5

Chaoul V, et al. (2023) Differential changes in cyclic adenosine 3'-5' monophosphate (cAMP) effectors and major Ca handling proteins during diabetic cardiomyopathy. J Cell Mol Med
36967707   Curated Info

6

Ng YH, et al. (2022) Sarco/endoplasmic reticulum calcium ATPase activity is unchanged despite increased myofilament calcium sensitivity in Zucker type 2 diabetic fatty rat heart. Sci Rep 12, 16904
36207382   Curated Info

7

Wang YW, et al. (2021) Bay 60-7550, a PDE2 inhibitor, exerts positive inotropic effect of rat heart by increasing PKA-mediated phosphorylation of phospholamban. Eur J Pharmacol 901, 174077
33798601   Curated Info

8

Mazeto IFS, et al. (2021) Calcium homeostasis behavior and cardiac function on left ventricular remodeling by pressure overload. Braz J Med Biol Res 54, e10138
33624728   Curated Info

9

Melo AB, et al. (2020) Resistance training promotes reduction in Visceral Adiposity without improvements in Cardiomyocyte Contractility and Calcium handling in Obese Rats. Int J Med Sci
32714085   Curated Info

10

de Souza SLB, et al. (2020) Adjustments in ¿¿-Adrenergic Signaling Contribute to the Amelioration of Cardiac Dysfunction by Exercise Training in Supravalvular Aortic Stenosis. Cell Physiol Biochem
32639114   Curated Info

11

Pritchard TJ, et al. (2013) Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts. PLoS One 8, e80717
24312496   Curated Info

12

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

13

Shintani-Ishida K, Yoshida K (2011) Ischemia induces phospholamban dephosphorylation via activation of calcineurin, PKC-α, and protein phosphatase 1, thereby inducing calcium overload in reperfusion. Biochim Biophys Acta 1812, 743-51
21447388   Curated Info

14

Yokoe S, et al. (2010) Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy. Glycobiology 20, 1217-26
20484118   Curated Info

15

Mohamed TM, et al. (2009) Specific role of neuronal nitric-oxide synthase when tethered to the plasma membrane calcium pump in regulating the beta-adrenergic signal in the myocardium. J Biol Chem 284, 12091-8
19278978   Curated Info

16

Gao MH, et al. (2008) Adenylyl cyclase type VI increases Akt activity and phospholamban phosphorylation in cardiac myocytes. J Biol Chem 283, 33527-35
18838385   Curated Info

17

Cuello F, et al. (2007) Protein kinase D selectively targets cardiac troponin I and regulates myofilament Ca2+ sensitivity in ventricular myocytes. Circ Res 100, 864-73
17322173   Curated Info

18

Kolwicz SC, et al. (2007) Effects of forskolin on inotropic performance and phospholamban phosphorylation in exercise-trained hypertensive myocardium. J Appl Physiol 102, 628-33
17082376   Curated Info

19

El-Armouche A, et al. (2006) Role of calcineurin and protein phosphatase-2A in the regulation of phosphatase inhibitor-1 in cardiac myocytes. Biochem Biophys Res Commun 346, 700-6
16774736   Curated Info

20

Valverde CA, et al. (2005) Frequency-dependent acceleration of relaxation in mammalian heart: a property not relying on phospholamban and SERCA2a phosphorylation. J Physiol 562, 801-13
15528241   Curated Info

21

Tschöpe C, et al. (2004) Improvement of defective sarcoplasmic reticulum Ca2+ transport in diabetic heart of transgenic rats expressing the human kallikrein-1 gene. FASEB J 18, 1967-9
15448111   Curated Info

22

Wang W, et al. (2004) Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 95, 798-806
15375008   Curated Info

23

Said M, et al. (2003) Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants. Am J Physiol Heart Circ Physiol 285, H1198-205
12763747   Curated Info

24

Said M, Mundiña-Weilenmann C, Vittone L, Mattiazzi A (2002) The relative relevance of phosphorylation of the Thr(17) residue of phospholamban is different at different levels of beta-adrenergic stimulation. Pflugers Arch 444, 801-9
12355181   Curated Info

25

Bokník P, et al. (2001) Enhanced protein phosphorylation in hypertensive hypertrophy. Cardiovasc Res 51, 717-28
11530105   Curated Info

26

Hagemann D, et al. (2000) Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J Biol Chem 275, 22532-6
10825152   Curated Info

27

Ojamaa K, Kenessey A, Klein I (2000) Thyroid hormone regulation of phospholamban phosphorylation in the rat heart. Endocrinology 141, 2139-44
10830301   Curated Info

28

Vittone L, Mundiña-Weilenmann C, Said M, Mattiazzi A (1998) Mechanisms involved in the acidosis enhancement of the isoproterenol-induced phosphorylation of phospholamban in the intact heart. J Biol Chem 273, 9804-11
9545319   Curated Info