Site Group Page (HTP records: those reporting > 100 non-redundant sites)
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
HomeAbout PhosphoSiteUsing PhosphoSiteprivacy & cookiesCuration ProcessContact
logos LINCs Logo Mt Sinai Logo NIH Logo NCI Logo
Site Group Page (HTP records: those reporting > 100 non-redundant sites)
 

Site Information
NCAM1 (human) S784-p AAFsKDEskEPIVEV Links 2, 3, 7, 9, 11, 15, 16, 20, 26
NCAM1 (mouse) S774-p AAFskDEskEPIVEV Links 1, 4, 5, 6, 8, 10, 13, 14, 17, 18, 19, 21, 22, 23, 24, 25, 27
NCAM1 (rat) S784-p AAFsKDEsKEPIVEV Links 12

Records

1

Parker BL, et al. (2015) Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry. Sci Signal 8, rs6
26060331   Curated Info

2

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

3

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

4

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

5

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

6

Schindler J, Ye J, Jensen ON, Nothwang HG (2013) Monitoring the native phosphorylation state of plasma membrane proteins from a single mouse cerebellum. J Neurosci Methods 213, 153-64
23246975   Curated Info

7

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

8

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

9

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

10

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

11

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

12

Lundby A, et al. (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun 3, 876
22673903   Curated Info

13

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

14

Wang Y, et al. (2011) Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 286, 18190-201
21454597   Curated Info

15

Herskowitz JH, et al. (2010) Phosphoproteomic Analysis Reveals Site-Specific Changes in GFAP and NDRG2 Phosphorylation in Frontotemporal Lobar Degeneration. J Proteome Res 9, 6368-79
20886841   Curated Info

16

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

17

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

18

Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8, 4966-82
19737024   Curated Info

19

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

20

Xia Q, et al. (2008) Phosphoproteomic analysis of human brain by calcium phosphate precipitation and mass spectrometry. J Proteome Res 7, 2845-51
18510355   Curated Info

21

Trinidad JC, et al. (2008) Quantitative analysis of synaptic phosphorylation and protein expression. Mol Cell Proteomics 7, 684-96
18056256   Curated Info

22

Guo A (2007) CST Curation Set: 3120; Year: 2007; Biosample/Treatment: tissue, brain/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)p[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PDK1 Docking Motif (18A2) Mouse mAb Cat#: 9634, PTMScan(R) Phospho-PDK1 Docking Motif (F/YS*/T*F/Y) Immunoaffinity Beads Cat#: 1992
Curated Info

23

Guo A (2007) CST Curation Set: 3121; Year: 2007; Biosample/Treatment: tissue, brain/-; Disease: -; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: (F/Y)p[ST] Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser/Thr) PDK1 Docking Motif (18A2) Mouse mAb Cat#: 9634, PTMScan(R) Phospho-PDK1 Docking Motif (F/YS*/T*F/Y) Immunoaffinity Beads Cat#: 1992
Curated Info

24

Munton RP, et al. (2007) Qualitative and quantitative analyses of protein phosphorylation in naive and stimulated mouse synaptosomal preparations. Mol Cell Proteomics 6, 283-93
17114649   Curated Info

25

Trinidad JC, et al. (2006) Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 5, 914-22
16452087   Curated Info

26

DeGiorgis JA, et al. (2005) Phosphoproteomic analysis of synaptosomes from human cerebral cortex. J Proteome Res 4, 306-15
15822905   Curated Info

27

Collins MO, et al. (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280, 5972-82
15572359   Curated Info

Home  |  Curator Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2013 Cell Signaling Technology, Inc.