Ser552
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
HomeAbout PhosphoSiteUsing PhosphoSiteCuration ProcessContact
NIH-logos NIGMS Logo NIAAA Logo NCI Logo NIH Logo
Phosphorylation Site Page:
Ser552 - CTNNB1 (mouse)

Site Information
QDTQRRTsMGGTQQQ    SwissProt Entrez-Gene
Predicted information: Scansite
Orthologous residues: CTNNB1 (human): S552, CTNNB1 (rat): S552
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 472273

In vivo Characterization
Methods used to characterize site in vivo: immunoprecipitation (17), mass spectrometry (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 16, 18), microscopy-colocalization with upstream kinase (10), phospho-antibody (10, 12, 13, 17), western blotting (12, 13)
Disease tissue studied: anthrax infection (8), melanoma skin cancer (16), Cowden disease (17)
Relevant cell line - cell type - tissue: 'brain, cerebral cortex' (13, 15), 'fat, brown'-'fat, brown' (9), brain (5, 9, 11), epithelial (12), epithelial [PIK3R1 (mouse), homozygous knockout] (10), heart (2, 9), intestine (17), kidney (9), liver (1, 4, 9, 18), liver [leptin (mouse), homozygous knockout] (4), lung (9), MEF (fibroblast) (3, 7), MEF (fibroblast) [p53 (mouse), homozygous knockout] (6), MEF (fibroblast) [TSC2 (mouse), homozygous knockout] (7), mpkCCD (renal) (14), pancreas (9), skin [mGluR1 (mouse), transgenic, TG mutant mice] (16), spleen (8, 9), testis (9)

Controlled by
Regulatory protein: IFNG (mouse) (12), PIK3R1 (mouse) (10), PTEN (mouse) (17)
Putative upstream kinases: Akt1 (mouse) (13)
Kinases, in vitro: Akt1 (human) (17)
Treatments: anti-CD3 (10), IL-22 (12), IL-6 (12), inflammation (12), LY294002 (10), piroxicam (10), tricibine (12, 13)

Downstream Regulation
Effects of modification on CTNNB1: intracellular localization (17)
Effects of modification on biological processes: transcription, altered (13)

Disease / Diagnostics Relevance
Relevant diseases: Cowden disease (17)

References

1

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

2

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

3

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

4

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

5

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

6

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

7

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

8

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

9

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

10

Lee G, et al. (2010) Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology 139, 869-81, 881.e1-9
20580720   Curated Info

11

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

12

Nava P, et al. (2010) Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-catenin signaling pathways. Immunity 32, 392-402
20303298   Curated Info

13

Zhang J, et al. (2010) Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell 18, 472-9
20230753   Curated Info

14

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

15

Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8, 4966-82
19737024   Curated Info

16

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

17

He XC, et al. (2007) PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39, 189-98
17237784   Curated Info

18

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

Home  |  Curator Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2013 Cell Signaling Technology, Inc.