Ser297
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
HomeAbout PhosphoSiteUsing PhosphoSiteCuration ProcessContact
logos LINCs Logo Mt Sinai Logo NIH Logo NCI Logo
Phosphorylation Site Page:
Ser297 - BAG3 (mouse)

Site Information
GTPVHCPsPIRVHTV   SwissProt Entrez-Gene
Predicted information:  Scansite
Orthologous residues: BAG3 (human): S291, BAG3 (rat): S294
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 467532

In vivo Characterization
Methods used to characterize site in vivo: mass spectrometry (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
Relevant cell line - cell type - tissue: '3T3-L1, differentiated' (adipocyte) (3), 'fat, brown'-'fat, brown' (11), 3T3 (fibroblast) (12), brain (8), heart (4, 11), kidney (11), liver (2, 7, 13), lung (11), macrophage-peritoneum (6), MC3T3-E1 (preosteoblast) (1), MEF (fibroblast) (5, 10), MEF (fibroblast) [p53 (mouse), homozygous knockout] (9), MEF (fibroblast) [Raptor (mouse), knockdown] (5), MEF (fibroblast) [RICTOR (mouse), knockdown] (5), MEF (fibroblast) [TSC2 (mouse), homozygous knockout] (10), spleen (11)

Controlled by
Regulatory protein: Raptor (mouse) (5), RICTOR (mouse) (5)
Treatments: insulin (3), LY294002 (3), MK-2206 (3), NAG-thiazoline (12), PTH(1-34) (1), PUGNAc (12)



References

1

Williams GR, et al. (2015) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods
26160508   Curated Info

2

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

3

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

4

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

5

Robitaille AM, et al. (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320-3
23429704   Curated Info

6

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

7

Grimsrud PA, et al. (2012) A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. Cell Metab 16, 672-83
23140645   Curated Info

8

Trinidad JC, et al. (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11, 215-29
22645316   Curated Info

9

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

10

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

11

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

12

Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105, 13793-8
18779572   Curated Info

13

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

Home  |  Curator Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2013 Cell Signaling Technology, Inc.