Ser480
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
HomeAbout PhosphoSiteUsing PhosphoSiteCuration ProcessContact
logos LINCs Logo Mt Sinai Logo NIH Logo NCI Logo
Phosphorylation Site Page:
Ser480 - FAM44A (mouse)

Site Information
YLYSKYYsDSDDELT   SwissProt Entrez-Gene
Predicted information:  Scansite
Orthologous residues: FAM44A (human): S482, FAM44A (rat): S400
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 3149521

In vivo Characterization
Methods used to characterize site in vivo: mass spectrometry (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
Disease tissue studied: anthrax infection (10), melanoma skin cancer (17)
Relevant cell line - cell type - tissue: '3T3-L1, differentiated' (adipocyte) (4), 'fat, brown'-'fat, brown' (11), 'stem, embryonic' (16), 32Dcl3 (myeloid) (15), 32Dcl3 (myeloid) [FLT3 (mouse), transfection, chimera with human FLT3-ITD mutant (corresponding to wild type P36888 ~aa 525-695 ETILLNS...IFEYCC)] (15), 3T3 (fibroblast) [CDC42 (human), transfection] (2), 3T3 (fibroblast) [KRas (human), transfection] (2), brain (7, 11, 13), heart (5, 11), Hepa 1-6 (epithelial) (18), kidney (11), liver (3, 11, 19), lung (11), macrophage-bone marrow (12), macrophage-bone marrow [MKP-1 (mouse), homozygous knockout] (12), macrophage-peritoneum (6), MC3T3-E1 (preosteoblast) (1), MEF (fibroblast) (9), MEF (fibroblast) [p53 (mouse), homozygous knockout] (8), MEF (fibroblast) [TSC2 (mouse), homozygous knockout] (9), mpkCCD (renal) (14), pancreas (11), skin [mGluR1 (mouse), transgenic, TG mutant mice] (17), spleen (10, 11), testis (11)




References

1

Williams GR, et al. (2015) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods
26160508   Curated Info

2

Gnad F, et al. (2013) Systems-wide Analysis of K-Ras, Cdc42, and PAK4 Signaling by Quantitative Phosphoproteomics. Mol Cell Proteomics 12, 2070-80
23608596   Curated Info

3

Wilson-Grady JT, Haas W, Gygi SP (2013) Quantitative comparison of the fasted and re-fed mouse liver phosphoproteomes using lower pH reductive dimethylation. Methods 61, 277-86
23567750   Curated Info

4

Humphrey SJ, et al. (2013) Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab 17, 1009-20
23684622   Curated Info

5

Lundby A, et al. (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of β-adrenergic receptor signaling. Sci Signal 6, rs11
23737553   Curated Info

6

Wu X, et al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics. Mol Cell Proteomics 11, 1640-51
22942356   Curated Info

7

Goswami T, et al. (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain. Proteomics 12, 2185-9
22807455   Curated Info

8

Hsu PP, et al. (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-22
21659604   Curated Info

9

Yu Y, et al. (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322-6
21659605   Curated Info

10

Manes NP, et al. (2011) Discovery of mouse spleen signaling responses to anthrax using label-free quantitative phosphoproteomics via mass spectrometry. Mol Cell Proteomics 10, M110.000927
21189417   Curated Info

11

Huttlin EL, et al. (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-89
21183079   Curated Info

12

Weintz G, et al. (2010) The phosphoproteome of toll-like receptor-activated macrophages. Mol Syst Biol 6, 371
20531401   Curated Info

13

Wiśniewski JR, et al. (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9, 3280-9
20415495   Curated Info

14

Rinschen MM, et al. (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci U S A 107, 3882-7
20139300   Curated Info

15

Choudhary C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell 36, 326-39
19854140   Curated Info

16

Li H, et al. (2009) SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics 8, 1839-49
19366988   Curated Info

17

Zanivan S, et al. (2008) Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry. J Proteome Res 7, 5314-26
19367708   Curated Info

18

Pan C, Gnad F, Olsen JV, Mann M (2008) Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors. Proteomics 8, 4534-46
18846507   Curated Info

19

Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104, 1488-93
17242355   Curated Info

Home  |  Curator Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2013 Cell Signaling Technology, Inc.