Ser1535
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
Home | Login
About PhosphoSiteUsing PhosphoSiteprivacy & cookiesCuration ProcessContact
logos LINCs Logo Mt Sinai Logo NIH Logo NCI Logo
Phosphorylation Site Page:
Ser1535 - CHD-4 (human)

Site Information
KkMsQPGsPsPKtPt   SwissProt Entrez-Gene
Predicted information:  Scansite
Blast this site against: NCBI  SwissProt  PDB 
Site Group ID: 452420

In vivo Characterization
Methods used to characterize site in vivo: mass spectrometry (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57)
Disease tissue studied: breast cancer (2, 6, 7, 16), breast ductal carcinoma (6), HER2 positive breast cancer (1), luminal A breast cancer (1), luminal B breast cancer (1), breast cancer, surrounding tissue (1), breast cancer, triple negative (1, 6), cervical cancer (36), cervical adenocarcinoma (36), leukemia (20, 40, 41, 50, 51, 52), acute myelogenous leukemia (20, 40, 41), acute erythroid leukemias, including erythroleukemia (M6a) and very rare pure erythroid leukemia (M6b) (15), acute megakaryoblastic leukemia (M7) (15), acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b) (15), acute myeloblastic leukemia, with granulocytic maturation (M2) (15), acute myeloblastic leukemia, without maturation (M1) (15), chronic myelogenous leukemia (50, 51, 52), lung cancer (10, 16), non-small cell lung cancer (16), non-small cell lung adenocarcinoma (10), B cell lymphoma (15), non-Hodgkin's lymphoma (15), neuroblastoma (14), ovarian cancer (6), multiple myeloma (15), melanoma skin cancer (4)
Relevant cell line - cell type - tissue: 293 (epithelial) (43), 293 (epithelial) [AT1 (human), transfection, AT1R stable transfected HEK293] (29), 293 (epithelial) [AT1 (human), transfection] (28), 786-O (renal) (3), 786-O (renal) [VHL (human), transfection] (3), A498 (renal) (32), A549 (pulmonary) (11), AML-193 (monocyte) (15), bone marrow (40, 41), breast (1, 6), BT-20 (breast cell) (16), BT-474 (breast cell) (2), BT-549 (breast cell) (16), Calu 6 (pulmonary) (16), CMK (megakaryoblast) (15), CTS (myeloid) (15), DG75 (B lymphocyte) (27), DOHH2 ('B lymphocyte, precursor') (15), endothelial-aorta (17), Flp-In T-Rex-293 (epithelial) (18), Flp-In T-Rex-293 (epithelial) [PRKD1 (human), genetic knockin] (18), GM00130 (B lymphocyte) (31), H1395 (pulmonary) (16), H2009 (pulmonary) (16), H2077 (pulmonary) (16), H2887 (pulmonary) (16), H322 (pulmonary) (16), H322M (pulmonary) (16), HCC1359 (pulmonary) (16), HCC1937 (breast cell) (16), HCC2279 (pulmonary) (16), HCC366 (pulmonary) (16), HCC4006 (pulmonary) (16), HCC78 (pulmonary) (16), HEL (erythroid) (15), HeLa (cervical) (5, 13, 25, 26, 37, 38, 44, 45, 46, 48, 57), HeLa (cervical) [OGT (rat), transfection] (37), HeLa S3 (cervical) (36), HMLER ('stem, breast cancer') (7), HMLER ('stem, breast cancer') [CXCR4 (human), knockdown] (7), HT-29 (intestinal) (56), HUES-7 ('stem, embryonic') (42), Jurkat (T lymphocyte) (12, 21, 22, 23, 30, 33, 34, 39, 47, 53), K562 (erythroid) (13, 49, 50, 51, 52), Kasumi-1 (myeloid) (15), KG-1 (myeloid) (15, 20), leukocyte-blood (35), liver (9), lung (10), MCF-7 (breast cell) (2, 16), MDA-MB231 (breast cell) (16), MDA-MB468 (breast cell) (16), MV4-11 (macrophage) (15), NB10 (neural crest) (14), NCI-H1568 (pulmonary) (16), NCI-H157 (pulmonary) (16), NCI-H1648 (pulmonary) (16), NCI-H1666 (pulmonary) (16), NCI-H1703 (squamous) (54, 55), NCI-H2030 (pulmonary) (16), NCI-H2172 (pulmonary) (16), NCI-H520 (squamous) (16), NCI-H647 (pulmonary) (16), NPC (neural crest) (14), OPM-2 (plasma cell) (15), ovary (6), P31/FUJ (erythroid) (15), PC9 (pulmonary) (16), RL ('B lymphocyte, precursor') (15), RPMI-8226 (plasma cell) (15), SH-SY5Y (neural crest) (8), SU-DHL-6 (B lymphocyte) (15), U266 (plasma cell) (15), WM239A (epidermal) (4)

Controlled by
Treatments: LRRK2-IN-1 (8), nocodazole (36)



References

1

Mertins P, et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62
27251275   Curated Info

2

Carrier M, et al. (2016) Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines. PLoS One 11, e0157290
27362937   Curated Info

3

Malec V, Coulson JM, Urbé S, Clague MJ (2015) Combined Analyses of the VHL and Hypoxia Signaling Axes in an Isogenic Pairing of Renal Clear Cell Carcinoma Cells. J Proteome Res 14, 5263-72
26506913   Curated Info

4

Stuart SA, et al. (2015) A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells. Mol Cell Proteomics 14, 1599-615
25850435   Curated Info

5

Sharma K, et al. (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8, 1583-94
25159151   Curated Info

6

Mertins P, et al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol Cell Proteomics 13, 1690-704
24719451   Curated Info

7

Yi T, et al. (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111, E2182-90
24782546   Curated Info

8

Luerman GC, et al. (2014) Phosphoproteomic evaluation of pharmacological inhibition of leucine-rich repeat kinase 2 reveals significant off-target effects of LRRK-2-IN-1. J Neurochem 128, 561-76
24117733   Curated Info

9

Bian Y, et al. (2014) An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics 96, 253-62
24275569   Curated Info

10

Schweppe DK, Rigas JR, Gerber SA (2013) Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J Proteomics 91, 286-96
23911959   Curated Info

11

Kim JY, et al. (2013) Dissection of TBK1 signaling via phosphoproteomics in lung cancer cells. Proc Natl Acad Sci U S A 110, 12414-9
23836654   Curated Info

12

Mertins P, et al. (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10, 634-7
23749302   Curated Info

13

Zhou H, et al. (2013) Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res 12, 260-71
23186163   Curated Info

14

DeNardo BD, et al. (2013) Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One 8, e82513
24349301   Curated Info

15

Casado P, et al. (2013) Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol 14, R37
23628362   Curated Info

16

Klammer M, et al. (2012) Phosphosignature predicts dasatinib response in non-small cell lung cancer. Mol Cell Proteomics 11, 651-68
22617229   Curated Info

17

Verano-Braga T, et al. (2012) Time-resolved quantitative phosphoproteomics: new insights into Angiotensin-(1-7) signaling networks in human endothelial cells. J Proteome Res 11, 3370-81
22497526   Curated Info

18

Franz-Wachtel M, et al. (2012) Global detection of protein kinase D-dependent phosphorylation events in nocodazole-treated human cells. Mol Cell Proteomics 11, 160-70
22496350   Curated Info

19

Beli P, et al. (2012) Proteomic Investigations Reveal a Role for RNA Processing Factor THRAP3 in the DNA Damage Response. Mol Cell 46, 212-25
22424773   Curated Info

20

Weber C, Schreiber TB, Daub H (2012) Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteomics 75, 1343-56
22115753   Curated Info

21

Mulhern D (2011) CST Curation Set: 12709; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

22

Mulhern D (2011) CST Curation Set: 12710; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP
Curated Info

23

Guo A (2011) CST Curation Set: 11892; Year: 2011; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY]
Curated Info

24

Rigbolt KT, et al. (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4, rs3
21406692   Curated Info

25

Kettenbach AN, et al. (2011) Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci Signal 4, rs5
21712546   Curated Info

26

Zhou J (2010) CST Curation Set: 10708; Year: 2010; Biosample/Treatment: cell line, HeLa/untreated; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpSP, pSPX(K/R) Antibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK/CDK Substrates (PXSP or SPXR/K) (34B2) Rabbit mAb Cat#: 2325, PTMScan(R) Phospho-MAPK/CDK Substrate Motif (PXS*P, S*PXK/R) Immunoaffinity Beads Cat#: 1982
Curated Info

27

Iliuk AB, et al. (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 9, 2162-72
20562096   Curated Info

28

Xiao K, et al. (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107, 15299-304
20686112   Curated Info

29

Christensen GL, et al. (2010) Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol Cell Proteomics 9, 1540-53
20363803   Curated Info

30

Possemato A (2010) CST Curation Set: 9960; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]Q
Curated Info

31

Bennetzen MV, et al. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response. Mol Cell Proteomics 9, 1314-23
20164059   Curated Info

32

Schreiber TB, et al. (2010) An integrated phosphoproteomics work flow reveals extensive network regulation in early lysophosphatidic acid signaling. Mol Cell Proteomics 9, 1047-62
20071362   Curated Info

33

Possemato A (2010) CST Curation Set: 9252; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif (4E2) Mouse mAb Cat#: 9606
Curated Info

34

Possemato A (2010) CST Curation Set: 8990; Year: 2010; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpTPAntibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK Substrates (PXTP) (46G11) Rabbit mAb Cat#: 4391, PTMScan(R) Phospho-MAPK Substrate Motif (PXpTP) Immunoaffinity Beads Cat#: 1983
Curated Info

35

Raijmakers R, et al. (2010) Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer. Anal Chem 82, 824-32
20058876   Curated Info

36

Olsen JV, et al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3, ra3
20068231   Curated Info

37

Wang Z, et al. (2010) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3, ra2
20068230   Curated Info

38

Pan C, Olsen JV, Daub H, Mann M (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics. Mol Cell Proteomics 8, 2796-808
19651622   Curated Info

39

Possemato A (2009) CST Curation Set: 8039; Year: 2009; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif (4E2) Mouse mAb Cat#: 9606
Curated Info

40

Gu T (2009) CST Curation Set: 7661; Year: 2009; Biosample/Treatment: tissue, bone marrow/untreated; Disease: acute myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpTPAntibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK Substrates (PXTP) (46G11) Rabbit mAb Cat#: 4391, PTMScan(R) Phospho-MAPK Substrate Motif (PXpTP) Immunoaffinity Beads Cat#: 1983
Curated Info

41

Gu T (2009) CST Curation Set: 7662; Year: 2009; Biosample/Treatment: tissue, bone marrow/untreated; Disease: acute myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpTPAntibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK Substrates (PXTP) (46G11) Rabbit mAb Cat#: 4391, PTMScan(R) Phospho-MAPK Substrate Motif (PXpTP) Immunoaffinity Beads Cat#: 1983
Curated Info

42

Van Hoof D, et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214-26
19664995   Curated Info

43

Gauci S, et al. (2009) Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 81, 4493-501
19413330   Curated Info

44

Nagano K, et al. (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment. Proteomics 9, 2861-74
19415658   Curated Info

45

Chen RQ, et al. (2009) CDC25B mediates rapamycin-induced oncogenic responses in cancer cells. Cancer Res 69, 2663-8
19276368   Curated Info

46

Zhou J (2009) CST Curation Set: 6253; Year: 2009; Biosample/Treatment: cell line, HeLa/UV; Disease: cervical adenocarcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpTPAntibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK Substrates (PXTP) (46G11) Rabbit mAb Cat#: 4391, PTMScan(R) Phospho-MAPK Substrate Motif (PXpTP) Immunoaffinity Beads Cat#: 1983
Curated Info

47

Mayya V, et al. (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2, ra46
19690332   Curated Info

48

Dephoure N, et al. (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-7
18669648   Curated Info

49

Stokes M (2008) CST Curation Set: 4605; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

50

Stokes M (2008) CST Curation Set: 4390; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

51

Stokes M (2008) CST Curation Set: 4394; Year: 2008; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[STY])
Curated Info

52

Possemato A (2007) CST Curation Set: 2723; Year: 2007; Biosample/Treatment: cell line, K562/untreated; Disease: chronic myelogenous leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif (4E2) Mouse mAb Cat#: 9606
Curated Info

53

Possemato A (2007) CST Curation Set: 2649; Year: 2007; Biosample/Treatment: cell line, Jurkat/calyculin_A & pervanadate; Disease: T cell leukemia; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]XP Antibodies Used to Purify Peptides prior to LCMS: Phospho-(Ser) 14-3-3 Binding Motif (4E2) Mouse mAb Cat#: 9606
Curated Info

54

Possemato A (2006) CST Curation Set: 1664; Year: 2006; Biosample/Treatment: cell line, NCI-H1703/serum starved; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P , PTMScan(R) PLK Binding Motif (SpTP) Immunoaffinity Beads Cat#: 1995
Curated Info

55

Possemato A (2006) CST Curation Set: 1665; Year: 2006; Biosample/Treatment: cell line, NCI-H1703/serum starved; Disease: non-small cell lung cancer; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: p[ST]P , PTMScan(R) PLK Binding Motif (SpTP) Immunoaffinity Beads Cat#: 1995
Curated Info

56

Moritz A (2005) CST Curation Set: 800; Year: 2005; Biosample/Treatment: cell line, HT-29/-; Disease: colorectal carcinoma; SILAC: -; Specificities of Antibodies Used to Purify Peptides prior to LCMS: PXpTPAntibodies Used to Purify Peptides prior to LCMS: Phospho-MAPK Substrates (PXTP) (46G11) Rabbit mAb Cat#: 4391, PTMScan(R) Phospho-MAPK Substrate Motif (PXpTP) Immunoaffinity Beads Cat#: 1983
Curated Info

57

Beausoleil SA, et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101, 12130-5
15302935   Curated Info

Home  |  Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2017 Cell Signaling Technology, Inc.