Curated Information
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
HomeAbout PhosphoSiteUsing PhosphoSiteCuration ProcessContact
NIH-logos NIGMS Logo NIAAA Logo NCI Logo NIH Logo
Curated Information Page
PubMed Id: 15735676 
This page summarizes selected information from the article referenced above and curated into PhosphoSitePlus®, a comprehensive online resource for the study of protein post-translational modifications (NAR, 2012,40:D261-70). To learn more about the scope of PhosphoSitePlus®, click here.
Hideshima T, et al. (2005) Molecular characterization of PS-341 (bortezomib) resistance: implications for overcoming resistance using lysophosphatidic acid acyltransferase (LPAAT)-beta inhibitors. Oncogene 24, 3121-9 15735676
Only sites from this record are displayed on this page. Click on the protein name to open the protein page, and on the RSD number to open the site page. For the complete dataset, click the download button, on the right.
Download Sites

S216-p - Cdc25C (human)
Orthologous residues
Cdc25C (human): S216‑p, Cdc25C iso3 (human): S173‑p, Cdc25C (mouse): , Cdc25C (frog): S287‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  SU-DHL-4 (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
CT-32615 decrease
Downstream Regulation
 Effect of modification (process):  cell cycle regulation

Y15-p - CDK1 (human)
Orthologous residues
CDK1 (human): Y15‑p, CDK1 (mouse): Y15‑p, CDK1 (rat): Y15‑p, CDK1 (chicken): Y15‑p, CDK1 (fruit fly): Y15‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  SU-DHL-4 (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
CT-32615 decrease
Downstream Regulation
 Effect of modification (process):  cell cycle regulation

T183-p - JNK1 (human)
Orthologous residues
JNK1 (human): T183‑p, JNK1 iso2 (human): T183‑p, JNK1 iso3 (human): T183‑p, JNK1 (mouse): T183‑p, JNK1 (rat): T183‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  MM (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
bortezomib increase

Y185-p - JNK1 (human)
Orthologous residues
JNK1 (human): Y185‑p, JNK1 iso2 (human): Y185‑p, JNK1 iso3 (human): Y185‑p, JNK1 (mouse): Y185‑p, JNK1 (rat): Y185‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  MM (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
bortezomib increase

T183-p - JNK2 (human)
Orthologous residues
JNK2 (human): T183‑p, JNK2 iso2 (human): T183‑p, JNK2 iso3 (human): T183‑p, JNK2 (mouse): T183‑p, JNK2 (rat): T183‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  MM (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
bortezomib increase

Y185-p - JNK2 (human)
Orthologous residues
JNK2 (human): Y185‑p, JNK2 iso2 (human): Y185‑p, JNK2 iso3 (human): Y185‑p, JNK2 (mouse): Y185‑p, JNK2 (rat): Y185‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  MM (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
bortezomib increase

S63-p - Jun (human)
Orthologous residues
Jun (human): S63‑p, Jun (mouse): S63‑p, Jun (rat): S63‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  MM (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
bortezomib increase

S257-p - MKK4 (human)
Orthologous residues
MKK4 (human): S257‑p, MKK4 (mouse): S255‑p, MKK4 (rat): S255‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  MM (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
bortezomib increase

T261-p - MKK4 (human)
Orthologous residues
MKK4 (human): T261‑p, MKK4 (mouse): T259‑p, MKK4 (rat): T259‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody
 Relevant cell lines - cell types - tissues:  MM (B lymphocyte)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
bortezomib increase


Home  |  Curator Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2013 Cell Signaling Technology, Inc.