Curated Information
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
HomeAbout PhosphoSiteUsing PhosphoSiteCuration ProcessContact
NIH-logos NIGMS Logo NIAAA Logo NCI Logo NIH Logo
Curated Information Page
PubMed Id: 15070733 
This page summarizes selected information from the article referenced above and curated into PhosphoSitePlus®, a comprehensive online resource for the study of protein post-translational modifications (NAR, 2012,40:D261-70). To learn more about the scope of PhosphoSitePlus®, click here.
Watanabe N, et al. (2004) M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc Natl Acad Sci U S A 101, 4419-24 15070733
Only sites from this record are displayed on this page. Click on the protein name to open the protein page, and on the RSD number to open the site page. For the complete dataset, click the download button, on the right.
Download Sites

S53-p - Wee1 (human)
Orthologous residues
Wee1 (human): S53‑p, Wee1 (mouse): S52‑p, Wee1 (rat): S52‑p, Wee1 (frog):
Characterization
 Methods used to characterize site in vivo mutation of modification site
 Relevant cell lines - cell types - tissues:  293T (epithelial), HeLa (cervical)
 Cellular systems studied:  cell lines
 Species studied:  human
 Enzymes shown to modify site in vitro
Type Enzyme
KINASE PLK1 (human)
Downstream Regulation
 Effect of modification (function):  molecular association, regulation, protein degradation
 Modification regulates interactions with: 
Interacting molecule Interacting domains Effect Consequences (function) Consequences (process) Detection assays
FBW1B (human) Induces co-immunoprecipitation

S123-p - Wee1 (human)
Orthologous residues
Wee1 (human): S123‑p, Wee1 (mouse): S123‑p, Wee1 (rat): S123‑p, Wee1 (frog):
Characterization
 Methods used to characterize site in vivo mutation of modification site
 Relevant cell lines - cell types - tissues:  293T (epithelial), HeLa (cervical)
 Cellular systems studied:  cell lines
 Species studied:  human
 Enzymes shown to modify site in vitro
Type Enzyme
KINASE CDK1 (human)
Downstream Regulation
 Effect of modification (function):  molecular association, regulation, protein degradation
 Modification regulates interactions with: 
Interacting molecule Interacting domains Effect Consequences (function) Consequences (process) Detection assays
FBW1B (human) Induces co-immunoprecipitation


Home  |  Curator Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2013 Cell Signaling Technology, Inc.