Curated Information
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
HomeAbout PhosphoSiteUsing PhosphoSiteCuration ProcessContact
NIH-logos NIGMS Logo NIAAA Logo NCI Logo NIH Logo
Curated Information Page
PubMed Id: 8605876 
Yan H, et al. (1996) Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J 15, 1064-74 8605876
This page summarizes selected information from the record referenced above and curated into PhosphoSitePlus®, a comprehensive online resource for the study of protein post-translational modifications (NAR, 2012,40:D261-70). To learn more about the scope of PhosphoSitePlus®, click here.
Only sites from this record are displayed on this page. Click on the protein name to open the protein page, and on the RSD number to open the site page. For the complete dataset, click the download button, on the right.
Download Sites

Y466-p - IFNAR1 (human)
Orthologous residues
IFNAR1 (human): Y466‑p, IFNAR1 (mouse): H458‑p
Characterization
 Methods used to characterize site in vivo mutation of modification site
 Relevant cell lines - cell types - tissues:  293T (epithelial)
 Cellular systems studied:  cell lines
 Species studied:  human
 Enzymes shown to modify site in vitro
Type Enzyme
KINASE Tyk2 (human)
Downstream Regulation
 Effect of modification (function):  molecular association, regulation, phosphorylation
 Modification regulates interactions with: 
Interacting molecule Interacting domains Effect Consequences (function) Consequences (process) Detection assays
STAT2 (human) SH2 Induces phosphorylation sequence-specific competitor, pull-down assay

Y481-p - IFNAR1 (human)
Orthologous residues
IFNAR1 (human): Y481‑p, IFNAR1 (mouse): F473‑p
Characterization
 Methods used to characterize site in vivo mutation of modification site
 Relevant cell lines - cell types - tissues:  293T (epithelial)
 Cellular systems studied:  cell lines
 Species studied:  human
 Enzymes shown to modify site in vitro
Type Enzyme
KINASE Tyk2 (human)


Home  |  Curator Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2013 Cell Signaling Technology, Inc.