Curated Information
Javascript is not enabled on this browser. This site will not work properly without Javascript.
PhosphoSitePlus Homepage Cell Signaling Technology
PhosphoSitePlus
HomeAbout PhosphoSiteUsing PhosphoSiteCuration ProcessContact
NIH-logos NIGMS Logo NIAAA Logo NCI Logo NIH Logo
Curated Information Page
PubMed Id: 16498402 
This page summarizes selected information from the article referenced above and curated into PhosphoSitePlus®, a comprehensive online resource for the study of protein post-translational modifications (NAR, 2012,40:D261-70). To learn more about the scope of PhosphoSitePlus®, click here.
Vilar M, et al. (2006) Bex1, a novel interactor of the p75 neurotrophin receptor, links neurotrophin signaling to the cell cycle. EMBO J 25, 1219-30 16498402
Only sites from this record are displayed on this page. Click on the protein name to open the protein page, and on the RSD number to open the site page. For the complete dataset, click the download button, on the right.
Download Sites

S473-p - Akt1 (human)
Orthologous residues
Akt1 (human): S473‑p, Akt1 (mouse): S473‑p, Akt1 (rat): S473‑p, Akt1 (fruit fly): S586‑p, Akt1 (cow): S473‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody, western blotting
 Relevant cell lines - cell types - tissues:  293 (epithelial)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
NGF increase

T202-p - ERK1 (human)
Orthologous residues
ERK1 (human): T202‑p, ERK1 (mouse): T203‑p, ERK1 (rat): T203‑p, ERK1 (hamster): T192‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody, western blotting
 Relevant cell lines - cell types - tissues:  293 (epithelial)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
NGF increase

Y204-p - ERK1 (human)
Orthologous residues
ERK1 (human): Y204‑p, ERK1 (mouse): Y205‑p, ERK1 (rat): Y205‑p, ERK1 (hamster): Y194‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody, western blotting
 Relevant cell lines - cell types - tissues:  293 (epithelial)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
NGF increase

T185-p - ERK2 (human)
Orthologous residues
ERK2 (human): T185‑p, ERK2 (mouse): T183‑p, ERK2 (rat): T183‑p, ERK2 (chicken): T193‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody, western blotting
 Relevant cell lines - cell types - tissues:  293 (epithelial)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
NGF increase

Y187-p - ERK2 (human)
Orthologous residues
ERK2 (human): Y187‑p, ERK2 (mouse): Y185‑p, ERK2 (rat): Y185‑p, ERK2 (chicken): Y195‑p
Characterization
 Methods used to characterize site in vivo phospho-antibody, western blotting
 Relevant cell lines - cell types - tissues:  293 (epithelial)
 Cellular systems studied:  cell lines
 Species studied:  human
Upstream Regulation
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
NGF increase

S105-p - BEX1 (rat)
Orthologous residues
BEX1 (human): S102‑p, BEX1 (mouse): S105‑p, BEX1 (rat): S105‑p
Characterization
 Methods used to characterize site in vivo mutation of modification site, phospho-antibody, western blotting
 Disease tissue studied:  adrenal cancer, pheochromocytoma
 Relevant cell lines - cell types - tissues:  293 (epithelial), PC-12 (chromaffin)
 Cellular systems studied:  cell lines
 Species studied:  human
 Enzymes shown to modify site in vitro
Type Enzyme
KINASE Akt1 (human)
Upstream Regulation
 Potential in vivo enzymes for site: 
Type Enzyme Evidence Notes
KINASE Akt1 (human) modification site within consensus motif, activation of upstream enzyme, phospho-antibody, mutation in upstream enzyme recognition motif
 Treatments, proteins and their effect on site modification: 
Treatments Referenced Treatments Manipulated Protein Referenced Protein Effect Notes
serum increase
LY294002 serum inhibit treatment-induced increase
NGF increase
Downstream Regulation
 Effect of modification (function):  protein stabilization


Home  |  Curator Login With enhanced literature mining using Linguamatics I2E I2E Logo Produced by 3rd Millennium  |  Design by Digizyme
©2003-2013 Cell Signaling Technology, Inc.